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Abstract

We investigate the dynamics of an arbitrary atomic system (n -level atoms or many n-level

atoms) interacting with a resonant quantized mode of an em field. If the initial field state

is a coherent state with a large photon number then the system dynamics possesses some

general features, independently of the particular structure of the atomic system. Namely,

trapping states, factorization of the wave function, collapses and revivals of the atomic energy
oscillations axe discussed.

1 Introduction

The Jaynes - Cummings Model is of principle importance in quantum optics. It consists of a single

atom interacting with a single mode of quantized em field in a lossless cavity. The properties of

JCM in the region of a strong coherent quantum field are:

1. Collapses and revivals of atomic inversion oscillations [1].

2. The existance of trapping states [2]. (These are initial atomic states which lead to the

constant mean value of atomic energy in the course of the interaction with the field).

3. Wave Function (WF) factorization in the trapping states [3]. (This very unusual property

of the JCM trapping states means that the field and atomic subsystems remain to a high

accuracy in pure states, in spite of the presence of interaction).

4. WF factorization for an arbitrary initial atomic state at a half revival time. For this time

moment the field state is a coherent superposition of macroscopically different states (so

called SchrSdinger cat) [4, 3].

Here, we address to ourselves the following question:

Which phenomena from this list will survive for an arbitrary atomic system interacting with a

strong quantum field ?
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2 What is an arbitrary atomic system ?

We start with some examples:

1. many two-level atoms in a cavity (the Dicke Model, [5]);

2. many three-level atoms of arbitrary level configurations in a cavity;

3. many n-level atoms of arbitrary degeneracy of the levels.

All these systems are described by Hamiltonians of the form:

: Ill
Here, ht, 5 are photon operators; h is the bare Hamiltonian of the atomic system; X+,)(_ are

atomic transition operators. We suppose, that the following commutation relations are valid:

The model formulated in such a way implies the Rotating Wave Approximation and, therefore,

the excitation number conservation:

[H,N] = 0, N=ata+£. (3)

It is usually the case in Quantum Optics. We do not impose any conditions on the commutator

[2+,_-]

which leads to a large freedom in the specification of the atomic subsystem.

We adopt also the exact resonance condition. It means that transition frequencies between

neighboring levels are equal to the field frequency w. This condition is imposed with a sake of

simplicity (the arbitrary detunings can be also involved in our approach). Stress, that the cavity

is supposed to be a perfect one. We do not discuss the dissipation processes here.

3 The classical field limit

For to approach the cl_sical field limit one has to take a coherent field states (CS) with large

photon numbers. Then one may substitute

where a = v_e _ is a CS parameter. Then the quantum interaction Hamiltonian becomes pro-

portional to the operator

Hot has the sense of the atomic Hamiltonian in a constant classical field. We will call the eigen-

vectors

£,1;>o, = _0 e>o, (4)
the semiclassical eigenvectors.
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4 Factorization of the Wave Function

We now formulate our principle result [6]. Let initial atomic state is semiclassical eigenstate and

initial field state is CS with a large photon number:

l in >=1 P >.t ®[a > (5)

Then the WF will be approximately factorized for the time up to gt ,,_ _. The factorized WF has
a form:

l e(t)> _ I Op(t)>®lAp(t)>,

lOp(t) > = _-_p=e-_at_g_ I
n

lAp(t) > = e-'cte-'t_phlp >., .

n >y,

(6)

Here, p,_ - initial CS amplitudes, C' is the energy ground level of the bare atomic system, e -ict

is a phase factor which we do not write down explicitly here.

We do not give here the proof of eqs.(6) (see [6]). Instead, let us qualitatively describe the

system behavior. Eqs.(6) stand that the field and the atomic subsystem remain approximately in

pure states in the course of the evolution (not in the mixed ones!). However, the two subsystems

essenthally interact. The field evolution depends on the semiclassical atomic eigenfrequency _0.

The field state rotates along the circle of radius v/-ff in the phase space slowly loosing the shape

of the initial CS (spreading in phase).

The atomic subsystem is rotated by the free atomic hamiltonian h with the angular velocity

(7)
wp_=

dependent on the initial photon number _.

We have proved eqs.(6) by means of the perturbation theory with the operator-valued small

parameter 1/(/_ r + 1/2) . We neglected the terms of order O(W -1/2) the amplitudes. However, we

kept higher accuracy in the frequencies (neglecting the terms of order O (1/_)). It means that

our approximation holds for times up to gt _ _. It is a usual situation, that the system dynamics

is more sensitive to the small corrections in frequencies, than in amplitudes.

5 Trapping states

It follows immediately from eqs. (6), that all the semiclassical eigenstates of an arbitrary atomic

system are trapping states, i.e. the mean value of the atomic inversion does not evolve with time:

< h(t) > = < _(t) I h I _(t) > = < Ap(t) lhlAp(t ) > =

< p_l h I p >or= const.

This result holds with the accuracy O(w-1/2), due to our accuracy for the transition amplitudes.
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6 Collapses and Revivals

This phenomenon, discovered initially for the JCM [1] appears for an arbitrary atomic system in

a strong coherent field. Indeed, an arbitrary initial state of the atomic system can be expanded

in the basis of the semiclassical eigenstates (4):

t¢ >o,= _G Ip >o,.
P

Then, for the atomic inversion we get:

< _(t) I h I _(t) > = _CqCv < Cq(t) I Op(t) >< Aq(t) l]_lAp(t) >.
P,q

The atomic inversion is determined by the scalar products of the field states (6):

< Oq(t) i Op(t ) > = -_1_ I_"_-,g,(.-_o)v,.-A/_+,/_
n! "

This is a direct generalization of the well-known unharmonic series for the JCM, which also

contains collapsing and reviving Rabi oscillations. The collapse, revival times and envelopes can

be easily found.

The atomic matrix elements entering in eq.(6) are slowly varying functions oscillating with the

frequency eq.(7). They may modulate the revival envelopes. However, for the Dicke model case

these matrix elements to be equal to zero if p ¢ q -4- 1 and the correspondent revivals disappear.

If p = q -4- 1 , the atomic matrix elements equals to 1 just for the time moments of revivals.

7 SchrSdinger Cat.

For the JCM case there are only two factorized states. An arbitrary initial state leads to the

superposition of them. The two JCM atomic states I Av(t) >, p = 0, 1 are nothing but two

different spin-l/2 coherent states and they can be transformed one to another by rotation. It just

happens at a half revival time tn/2 [3]:

I Ao(tn/2) > = I A,(tn/2) > = I¢0 >a,,

and then the system WF is factorized for an arbitrary initial atomic state:

I ,_(t_/2) > = I¢o >o, (I ¢o(tR/2)> + I Ol(tn/2) >)

Therefore, at this time moment the field WF is the quantum superposition of macroscopically

different states ] Or(t) >, p = 0, 1.

It is clear, that for larger atomic system (say for spin-l) not all different atomic semiclassical

eigenstates can be transformed one into another by rotation, and the SchrSdinger cat is absent

for arbitrary initial atomic state (as it has been recently noticed in the work [7]
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8 Conclusions

We have solved the problem of the interaction of an arbitrary atomic system with the strong quan-

tized em field in a lossless cavity. The key point of our solution is the wave function factorization

(6) for the specially chosen initial states (4).

Since these states form a complete basis, this gives possibilities for an exhaustive description
of the system dynamics.

Being reduced to the JCM, our results reproduce the treatment of J. Gea-Banacloche [3].

For the case of the Dicke model, they correspond to the first two orders of the perturbation

theory proposed in the work [8] and can be treated as a direct generalization of that scheme for

the arbitrary atomic system. From the mathematical point of view, our treatment is connected

with the concept of dynamical symmetry group for the quantum optical systems [9]. (Note, that

this dynamical symmetry is approximate rather than exact one).

Stress, that our method allows to make explicit analytical calculations of any physical quantities
for the systems under study.
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